Graphene-based Josephson junction microwave bolometer

Nature
  • 1.

    Benford, D., Amato, M., Mather, J. C., Moseley, S. H. & Leisawitz, D. Mission concept for the Single Aperture Far-Infrared (SAFIR) Observatory. Astrophys. Space Sci. 294, 177–212 (2004).

    ADS 
    Article 

    Google Scholar
     

  • 2.

    Graham, P. W., Irastorza, I. G., Lamoreaux, S. K., Lindner, A. & van Bibber, K. A. Experimental searches for the axion and axion-like particles. Annu. Rev. Nucl. Part. Sci. 65, 485–514 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Govia, L. C. G. et al. High-fidelity qubit measurement with a microwave-photon counter. Phys. Rev. A 90, 062307 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 4.

    Inomata, K. et al. Single microwave-photon detector using an artificial Λ-type three-level system. Nat. Commun. 7, 12303 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Wei, J. et al. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nat. Nanotechnol. 3, 496–500 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 6.

    Gasparinetti, S. et al. Fast electron thermometry for ultrasensitive calorimetric detection. Phys. Rev. Appl. 3, 014007 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 7.

    Govenius, J., Lake, R. E., Tan, K. Y. & Möttönen, M. Detection of zeptojoule microwave pulses using electrothermal feedback in proximity-induced Josephson junctions. Phys. Rev. Lett. 117, 030802 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Lee, G.-H., Jeong, D., Choi, J.-H., Doh, Y.-J. & Lee, H.-J. Electrically tunable macroscopic quantum tunneling in a graphene-based Josephson junction. Phys. Rev. Lett. 107, 146605 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Coskun, U. C. et al. Distribution of supercurrent switching in graphene under the proximity effect. Phys. Rev. Lett. 108, 097003 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Borzenets, I., Coskun, U. C., Jones, S. J. & Finkelstein, G. Phonon bottleneck in graphene-based Josephson junctions at millikelvin temperatures. Phys. Rev. Lett. 111, 027001 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 11.

    Calado, V. E. et al. Ballistic Josephson junctions in edge-contacted graphene. Nat. Nanotechnol. 10, 761–764 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Ben Shalom, M. et al. Quantum oscillations of the critical current and high-field superconducting proximity in ballistic graphene. Nat. Phys. 12, 318–322 (2016).

    Article 

    Google Scholar
     

  • 13.

    Wang, J. I.-J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 14.

    Moseley, S. H., Mather, J. C. & McCammon, D. Thermal detectors as X-ray spectrometers. J. Appl. Phys. 56, 1257–1262 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 15.

    Vora, H., Kumaravadivel, P., Nielsen, B. & Du, X. Bolometric response in graphene based superconducting tunnel junctions. Appl. Phys. Lett. 100, 153507 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 16.

    Fong, K. C. & Schwab, K. Ultrasensitive and wide-bandwidth thermal measurements of graphene at low temperatures. Phys. Rev. X 2, 031006 (2012).


    Google Scholar
     

  • 17.

    Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nat. Nanotechnol. 7, 472–478 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 18.

    McKitterick, C., Prober, D. & Karasik, B. Performance of graphene thermal photon detectors. J. Appl. Phys. 113, 044512 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Efetov, D. K. et al. Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out. Nat. Nanotechnol. 13, 797–801 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 20.

    Han, Q. et al. Highly sensitive hot electron bolometer based on disordered graphene. Sci. Rep. 3, 3533 (2013).

    Article 

    Google Scholar
     

  • 21.

    Cai, X. et al. Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene. Nat. Nanotechnol. 9, 814–819 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    El Fatimy, A. E. et al. Epitaxial graphene quantum dots for high-performance terahertz bolometers. Nat. Nanotechnol. 11, 335–338 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Walsh, E. D. et al. Graphene-based Josephson-junction single-photon detector. Phys. Rev. Appl. 8, 024022 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Viljas, J. K. & Heikkila, T. T. Electron–phonon heat transfer in monolayer and bilayer graphene. Phys. Rev. B 81, 245404 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 26.

    Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron–phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 27.

    Chen, W. & Clerk, A. Electron-phonon mediated heat flow in disordered graphene. Phys. Rev. B 86, 125443 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Betz, A. C. et al. Supercollision cooling in undoped graphene. Nat. Phys. 9, 109–112 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Graham, M. W., Shi, S.-F., Ralph, D. C., Park, J. & Mceuen, P. L. Photocurrent measurements of supercollision cooling in graphene. Nat. Phys. 9, 103–108 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Tirelli, S. et al. Manipulation and generation of supercurrent in out-of-equilibrium Josephson tunnel nanojunctions. Phys. Rev. Lett. 101, 077004 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    Morpurgo, A. F., Klapwijk, T. M. & van Wees, B. J. Hot electron tunable supercurrent. Appl. Phys. Lett. 72, 966–968 (1998).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 32.

    Oelsner, G. et al. Detection of weak microwave fields with an underdamped Josephson junction. Phys. Rev. Appl. 7, 014012 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Draelos, A. W. et al. Supercurrent flow in multiterminal graphene Josephson junctions. Nano Lett. 19, 1039–1043 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 34.

    Halbertal, D. et al. Imaging resonant dissipation from individual atomic defects in graphene. Science 358, 1303–1306 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 35.

    Martinis, J. M., Devoret, M. H. & Clarke, J. Experimental tests for the quantum behavior of a macroscopic degree of freedom: the phase difference across a Josephson junction. Phys. Rev. B 35, 4682–4698 (1987).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 36.

    Fulton, T. A. & Dunkelberger, L. N. Lifetime of zero-voltage state in Josephson tunnel junctions. Phys. Rev. B 9, 4760–4768 (1974).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Ponomarenko, L. A. et al. Cloning of Dirac fermions in graphene superlattices. Nature 497, 594–597 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 38.

    Khalil, M. S., Stoutimore, M. J. A., Wellstood, F. C. & Osborn, K. D. An analysis method for asymmetric resonator transmission applied to superconducting devices. J. Appl. Phys. 111, 054510 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 39.

    Kong, J. F., Levitov, L., Halbertal, D. & Zeldov, E. Resonant electron-lattice cooling in graphene. Phys. Rev. B 97, 245416 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • Products You May Like

    Leave a Reply

    Your email address will not be published. Required fields are marked *