Chromothripsis drives the evolution of gene amplification in cancer

Nature



  • 1.

    Benner, S. E., Wahl, G. M. & Von Hoff, D. D. Double minute chromosomes and homogeneously staining regions in tumors taken directly from patients versus in human tumor cell lines. Anticancer Drugs 2, 11–25 (1991).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     




  • 2.

    Turner, K. M. et al. Extrachromosomal oncogene amplification drives tumour evolution and genetic heterogeneity. Nature 543, 122–125 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 3.

    Albertson, D. G. Gene amplification in cancer. Trends Genet. 22, 447–455 (2006).

    MathSciNet 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     




  • 4.

    Alt, F. W., Kellems, R. E., Bertino, J. R. & Schimke, R. T. Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J. Biol. Chem. 253, 1357–1370 (1978).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 5.

    Kaufman, R. J., Brown, P. C. & Schimke, R. T. Amplified dihydrofolate reductase genes in unstably methotrexate-resistant cells are associated with double minute chromosomes. Proc. Natl Acad. Sci. USA 76, 5669–5673 (1979).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     




  • 6.

    Nunberg, J. H., Kaufman, R. J., Schimke, R. T., Urlaub, G. & Chasin, L. A. Amplified dihydrofolate reductase genes are localized to a homogeneously staining region of a single chromosome in a methotrexate-resistant Chinese hamster ovary cell line. Proc. Natl Acad. Sci. USA 75, 5553–5556 (1978).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     




  • 7.

    Carroll, S. M. et al. Double minute chromosomes can be produced from precursors derived from a chromosomal deletion. Mol. Cell. Biol. 8, 1525–1533 (1988).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 8.

    Ruiz, J. C. & Wahl, G. M. Chromosomal destabilization during gene amplification. Mol. Cell. Biol. 10, 3056–3066 (1990).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 9.

    Coquelle, A., Rozier, L., Dutrillaux, B. & Debatisse, M. Induction of multiple double-strand breaks within an hsr by meganucleaseI-SceI expression or fragile site activation leads to formation of double minutes and other chromosomal rearrangements. Oncogene 21, 7671–7679 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     




  • 10.

    Nathanson, D. A. et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 343, 72–76 (2014).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar
     


  • 11.

    The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).




  • 12.

    Li, Y. et al. Patterns of somatic structural variation in human cancer genomes. Nature 578, 112–121 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 13.

    Cortes-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 14.

    Stephens, P. J. et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27–40 (2011).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 15.

    deCarvalho, A. C. et al. Discordant inheritance of chromosomal and extrachromosomal DNA elements contributes to dynamic disease evolution in glioblastoma. Nat. Genet. 50, 708–717 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 16.

    Verhaak, R. G. W., Bafna, V. & Mischel, P. S. Extrachromosomal oncogene amplification in tumour pathogenesis and evolution. Nat. Rev. Cancer 19, 283–288 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 17.

    Rausch, T. et al. Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell 148, 59–71 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 18.

    Nones, K. et al. Genomic catastrophes frequently arise in esophageal adenocarcinoma and drive tumorigenesis. Nat. Commun. 5, 5224 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 19.

    Ly, P. et al. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements. Nat. Genet. 51, 705–715 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 20.

    Singer, M. J., Mesner, L. D., Friedman, C. L., Trask, B. J. & Hamlin, J. L. Amplification of the human dihydrofolate reductase gene via double minutes is initiated by chromosome breaks. Proc. Natl Acad. Sci. USA 97, 7921–7926 (2000).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     




  • 21.

    Windle, B., Draper, B. W., Yin, Y. X., O’Gorman, S. & Wahl, G. M. A central role for chromosome breakage in gene amplification, deletion formation, and amplicon integration. Genes Dev. 5, 160–174 (1991).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     




  • 22.

    McClintock, B. The stability of broken ends of chromosomes in Zea mays. Genetics 26, 234–282 (1941).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 23.

    Glodzik, D. et al. A somatic-mutational process recurrently duplicates germline susceptibility loci and tissue-specific super-enhancers in breast cancers. Nat. Genet. 49, 341–348 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 24.

    Garsed, D. W. et al. The architecture and evolution of cancer neochromosomes. Cancer Cell 26, 653–667 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     




  • 25.

    Landry, J. J. et al. The genomic and transcriptomic landscape of a HeLa cell line. G3 (Bethesda) 3, 1213–1224 (2013).

    Article 
    CAS 

    Google Scholar
     




  • 26.

    Zhang, C. Z. et al. Chromothripsis from DNA damage in micronuclei. Nature 522, 179–184 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 27.

    Yaeger, R. et al. Mechanisms of acquired resistance to BRAF V600E inhibition in colon cancers converge on RAF dimerization and are sensitive to its inhibition. Cancer Res. 77, 6513–6523 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 28.

    Ly, P. et al. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat. Cell Biol. 19, 68–75 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     




  • 29.

    Shimizu, N., Hashizume, T., Shingaki, K. & Kawamoto, J. K. Amplification of plasmids containing a mammalian replication initiation region is mediated by controllable conflict between replication and transcription. Cancer Res. 63, 5281–5290 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     




  • 30.

    Maciejowski, J., Li, Y., Bosco, N., Campbell, P. J. & de Lange, T. Chromothripsis and kataegis induced by telomere crisis. Cell 163, 1641–1654 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 31.

    Hoffelder, D. R. et al. Resolution of anaphase bridges in cancer cells. Chromosoma 112, 389–397 (2004).

    PubMed 
    Article 

    Google Scholar
     




  • 32.

    Helleday, T., Petermann, E., Lundin, C., Hodgson, B. & Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 8, 193–204 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar
     




  • 33.

    Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 34.

    Fachinetti, D. et al. DNA sequence-specific binding of CENP-B enhances the fidelity of human centromere function. Dev. Cell 33, 314–327 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 35.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 36.

    Ou, H. D. et al. ChromEMT: visualizing 3D chromatin structure and compaction in interphase and mitotic cells. Science 357, eaag0025 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     




  • 37.

    Ou, H. D., Deerinck, T. J., Bushong, E., Ellisman, M. H. & O’Shea, C. C. Visualizing viral protein structures in cells using genetic probes for correlated light and electron microscopy. Methods 90, 39–48 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 38.

    Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 39.

    Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     




  • 40.

    Raine, K. M. et al. ascatNgs: identifying somatically acquired copy-number alterations from whole-genome sequencing data. Curr. Protoc. Bioinformatics 56, 15.9.1–15.9.17 (2016).

    Article 

    Google Scholar
     




  • 41.

    Nik-Zainal, S. et al. Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534, 47–54 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 42.

    Korbel, J. O. & Campbell, P. J. Criteria for inference of chromothripsis in cancer genomes. Cell 152, 1226–1236 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     




  • 43.

    Li, Y. et al. Constitutional and somatic rearrangement of chromosome 21 in acute lymphoblastic leukaemia. Nature 508, 98–102 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     




  • 44.

    Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Campbell, P. J. & Stratton, M. R. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 3, 246–259 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    Why the Moon?
    Coming Soon: Orion Flight Test

    Leave a Reply

    Your email address will not be published. Required fields are marked *