Pairing of segmentation clock genes drives robust pattern formation

Nature



  • 1.

    Ozbudak, E. M., Thattai, M., Kurtser, I., Grossman, A. D. & van Oudenaarden, A. Regulation of noise in the expression of a single gene. Nat. Genet. 31, 69–73 (2002).

    CAS 
    Article 

    Google Scholar
     




  • 2.

    Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 3.

    Adachi, N. & Lieber, M. R. Bidirectional gene organization: a common architectural feature of the human genome. Cell 109, 807–809 (2002).

    CAS 
    Article 

    Google Scholar
     




  • 4.

    Yang, L. & Yu, J. A comparative analysis of divergently-paired genes (DPGs) among Drosophila and vertebrate genomes. BMC Evol. Biol. 9, 55 (2009).

    Article 

    Google Scholar
     




  • 5.

    Arnone, J. T., Robbins-Pianka, A., Arace, J. R., Kass-Gergi, S. & McAlear, M. A. The adjacent positioning of co-regulated gene pairs is widely conserved across eukaryotes. BMC Genomics 13, 546 (2012).

    CAS 
    Article 

    Google Scholar
     




  • 6.

    Yan, C., Wu, S., Pocetti, C. & Bai, L. Regulation of cell-to-cell variability in divergent gene expression. Nat. Commun. 7, 11099 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 7.

    Hubaud, A. & Pourquié, O. Signalling dynamics in vertebrate segmentation. Nat. Rev. Mol. Cell Biol. 15, 709–721 (2014).

    CAS 
    Article 

    Google Scholar
     




  • 8.

    Lewis, J. Autoinhibition with transcriptional delay: a simple mechanism for the zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398–1408 (2003).

    CAS 
    Article 

    Google Scholar
     




  • 9.

    Giudicelli, F., Ozbudak, E. M., Wright, G. J. & Lewis, J. Setting the tempo in development: an investigation of the zebrafish somite clock mechanism. PLoS Biol. 5, e150 (2007).

    Article 

    Google Scholar
     




  • 10.

    Harima, Y., Takashima, Y., Ueda, Y., Ohtsuka, T. & Kageyama, R. Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene. Cell Rep. 3, 1–7 (2013).

    CAS 
    Article 

    Google Scholar
     




  • 11.

    Ay, A., Knierer, S., Sperlea, A., Holland, J. & Özbudak, E. M. Short-lived Her proteins drive robust synchronized oscillations in the zebrafish segmentation clock. Development 140, 3244–3253 (2013).

    CAS 
    Article 

    Google Scholar
     




  • 12.

    Schröter, C. et al. Topology and dynamics of the zebrafish segmentation clock core circuit. PLoS Biol. 10, e1001364 (2012).

    Article 

    Google Scholar
     




  • 13.

    Hanisch, A. et al. The elongation rate of RNA polymerase II in zebrafish and its significance in the somite segmentation clock. Development 140, 444–453 (2013).

    CAS 
    Article 

    Google Scholar
     




  • 14.

    Keskin, S. et al. Noise in the vertebrate segmentation clock is boosted by time delays but tamed by Notch signaling. Cell Rep. 23, 2175–2185 (2018).

    CAS 
    Article 

    Google Scholar
     




  • 15.

    Choorapoikayil, S., Willems, B., Ströhle, P. & Gajewski, M. Analysis of her1 and her7 mutants reveals a spatio temporal separation of the somite clock module. PLoS ONE 7, e39073 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 16.

    Henry, C. A. et al. Two linked hairy/Enhancer of split-related zebrafish genes, her1 and her7, function together to refine alternating somite boundaries. Development 129, 3693–3704 (2002).

    CAS 
    PubMed 

    Google Scholar
     




  • 17.

    Lleras Forero, L. et al. Segmentation of the zebrafish axial skeleton relies on notochord sheath cells and not on the segmentation clock. eLife 7, e33843 (2018).

    Article 

    Google Scholar
     




  • 18.

    Becskei, A., Kaufmann, B. B. & van Oudenaarden, A. Contributions of low molecule number and chromosomal positioning to stochastic gene expression. Nat. Genet. 37, 937–944 (2005).

    CAS 
    Article 

    Google Scholar
     




  • 19.

    Raj, A., Peskin, C. S., Tranchina, D., Vargas, D. Y. & Tyagi, S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol. 4, e309 (2006).

    Article 

    Google Scholar
     




  • 20.

    Fukaya, T., Lim, B. & Levine, M. Enhancer control of transcriptional bursting. Cell 166, 358–368 (2016).

    CAS 
    Article 

    Google Scholar
     




  • 21.

    Schröter, C. et al. Dynamics of zebrafish somitogenesis. Dev. Dyn. 237, 545–553 (2008).

    Article 

    Google Scholar
     




  • 22.

    Kawamura, A. et al. Zebrafish hairy/enhancer of split protein links FGF signaling to cyclic gene expression in the periodic segmentation of somites. Genes Dev. 19, 1156–1161 (2005).

    CAS 
    Article 

    Google Scholar
     




  • 23.

    Novák, B. & Tyson, J. J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9, 981–991 (2008).

    Article 

    Google Scholar
     




  • 24.

    Trofka, A. et al. The Her7 node modulates the network topology of the zebrafish segmentation clock via sequestration of the Hes6 hub. Development 139, 940–947 (2012).

    CAS 
    Article 

    Google Scholar
     




  • 25.

    Delaune, E. A., François, P., Shih, N. P. & Amacher, S. L. Single-cell-resolution imaging of the impact of Notch signaling and mitosis on segmentation clock dynamics. Dev. Cell 23, 995–1005 (2012).

    CAS 
    Article 

    Google Scholar
     




  • 26.

    Moreno-Mateos, M. A. et al. CRISPRscan: designing highly efficient sgRNAs for CRISPR–Cas9 targeting in vivo. Nat. Methods 12, 982–988 (2015).

    CAS 
    Article 

    Google Scholar
     




  • 27.

    Jao, L. E., Wente, S. R. & Chen, W. Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl Acad. Sci. USA 110, 13904–13909 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 28.

    Cooper, M. S. et al. Visualizing morphogenesis in transgenic zebrafish embryos using BODIPY TR methyl ester dye as a vital counterstain for GFP. Dev. Dyn. 232, 359–368 (2005).

    CAS 
    Article 

    Google Scholar
     




  • 29.

    Sarkans, U. et al. The BioStudies database-one stop shop for all data supporting a life sciences study. Nucleic Acids Res. 46 (D1), D1266–D1270 (2018).

    CAS 
    Article 

    Google Scholar
     




  • 30.

    Riedel-Kruse, I. H., Müller, C. & Oates, A. C. Synchrony dynamics during initiation, failure, and rescue of the segmentation clock. Science 317, 1911–1915 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 31.

    Gomez, C. et al. Control of segment number in vertebrate embryos. Nature 454, 335–339 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 32.

    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    CAS 
    Article 

    Google Scholar
     




  • 33.

    Soroldoni, D. et al. Genetic oscillations. A Doppler effect in embryonic pattern formation. Science 345, 222–225 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     




  • 34.

    Anderson, D. F. A modified next reaction method for simulating chemical systems with time dependent propensities and delays. J. Chem. Phys. 127, 214107 (2007).

    ADS 
    Article 

    Google Scholar
     


  • 35.

    Cohen, J. Statistical Power Analysis for the Behavioral Sciences (L. Erlbaum Associates, 1988).




  • 36.

    Faul, F., Erdfelder, E., Lang, A. G. & Buchner, A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007).

    Article 

    Google Scholar
     

  • Products You May Like

    Articles You May Like

    From The Mill To Your Glass, Here’s How Apple Cider Is Made
    Cleaning Hospital Laundry | How It’s Made
    How It’s Made: Champagne Hoods
    How It’s Made: Woven Cashmere Fabric
    60 Years of Mars Exploration Has Led to This

    Leave a Reply

    Your email address will not be published. Required fields are marked *